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This paper shows the application of remote sensing data for estimating winter

wheat yield in Kansas. An algorithm uses the Vegetation Health (VH) Indices

(Vegetation Condition Index (VCI) and Temperature Condition Index (TCI))

computed for each week over a period of 23 years (1982–2004) from Advance

Very High Resolution Radiometer (AVHRR) data. The weekly indices were

correlated with the end of the season winter wheat (WW) yield. A strong

correlation was found between winter wheat yield and VCI (characterizing

moisture conditions) during the critical period of winter wheat development and

productivity that occurs during April to May (weeks 16 to 23). Following the

results of correlation analysis, the principal components regression (PCR)

method was used to construct a model to predict yield as a function of the VCI

computed for this period. The simulated results were compared with official

agricultural statistics showing that the errors of the estimates of winter wheat

yield are less than 8%. Remote sensing, therefore, is a valuable tool for estimating

crop yields well in advance of harvest, and at a low cost.

1. Introduction

Recent dry and drought years in the Great Plains have emphasized the need for new

sources of timely, objective and quantitative information on crop conditions. Crop

growth monitoring and yield estimation can provide important information for

government agencies, commodity traders and producers in planning harvest,

storage, transportation and marketing activities. The sooner this information is
available, the lower the economic risk, translating into greater efficiency and

increased return on investments. This paper focuses on wheat because it is by far the

world’s largest and most widely cultivated food crop. Wheat is the source of 15% to

60% of the calories and protein in the diets of nearly all countries. Bread, the

principal product of wheat, is considered the staff of life in most cultures (Shroyer

et al. 2004).

The major wheat producing countries are China, India, US, France, Russia,

Canada and Australia. Marketing of wheat is a multi-billion dollar industry. World

demand for wheat is growing 1% per year. Total world wheat production in 2004

reached 630 million tonnes, but in 2003 wheat production was 70 million tonnes less.
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The major wheat exporting countries, the USA, Canada, France, Australia,

Argentina, Germany, United Kingdom and Kazakhstan, supply approximately 70%

of the wheat traded in the world market. The major importing countries include

Brazil, Egypt, Italy, Japan, Iran, Algeria and China (FAO 2005).

In the USA, wheat is the fourth leading field crop and the leading export crop.

Total USA wheat production in 2003 reached 64 million tonnes, while in 2005 wheat

production was only 57 million tonnes (FAO 2005). This reduction was due to

unfavourable weather. Weather information is normally used to forecast crop yield.

However, the weather station network used for these assessments is limited

compared to satellite data. For example, the National Oceanic and Atmospheric

Administration’s (NOAA’s) National Weather Service (NWS) oversees 266 weather

stations throughout Kansas. Every station provides a spatial coverage of around

800 km2. The purpose of the present research was to use AVHRR data that provides

environmental information for every 16 km2.

Tremendous advances in remote sensing technology and computing power over the

last few decades are now providing scientists with the opportunity to investigate,

measure and model environmental patterns and processes with increasing confidence.

Remote sensing of the Earth is playing an increasing role in understanding the natural

environment and its inherent physical, biological and chemical processes.

The uses of remote sensing for crop monitoring and yield assessments already

represent a very active field of research and application. In Europe, the MARS

(Monitoring of Agriculture by Remote Sensing) Project of the Joint Research

Centre has taken a leading role in such development (Csornai et al. 2002, ITA 2002).

In the USA, the United States Department of Agriculture’s (USDA’s) National

Agricultural Statistics Service (NASS) uses satellite data to enhance its program of

crop acreage estimates. This program is used for construction of the nation’s area

sampling frame for agricultural statistics, improvement of the statistical precision of

crop acreage estimate indicators, especially at the county level and application of

GIS based Cropland Data Layer used for watershed monitoring, soil utilization

analysis, agribusiness planning, crop rotation practice analysis, animal habitat

monitoring and prairie water pothole monitoring (Craig 2001, Mueller et al. 2003).

In addition, AVHRR-based vegetation health indices were found to be very useful

for early drought detection and for monitoring drought impacts on crop and pasture

production around the world, including such major agricultural producers as China,

Russia, Brazil, Argentina and Kazakhstan (Dabrowska-Zielinska et al. 2002, Kogan

2002, Liu and Kogan 2002, Kogan et al. 2003, Domenikiotis et al. 2004, Kogan et al.

2005). In the USA, these indices were also applied for monitoring corn production

in the Great Plains (Hayas and Decker 1996). This paper investigates the application

of AVHRR-based vegetation health indices as proxies for the characterization of

weather conditions and their impacts on winter wheat yield.

2. Study area and data

The study area was Kansas, which is the largest winter wheat (WW) producing state

in the US. Nearly one-fifth of all USA WW volume is produced in Kansas (USCRB

2005). Annual average wheat production in Kansas for the past five years has been

about 10 million tonnes harvested from an average four million hectares. Kansas

ranks number one out of all the US states in wheat and wheat products exported

(USCRB 2005). Two types of wheat are grown in the US, winter wheat sown in the

autumn and harvested in early summer, and spring wheat planted in the spring and

3796 L. Salazar et al.
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harvested in late summer/early autumn. Winter wheat provides 70% to 80% of the

total wheat production (USCRB 2005). Kansas is divided into nine Crop Reporting

Districts (CRDs) as shown in figure 1. From the figure, it can be seen that western

and central CRDs are the major producers of WW. CRD 60 is the major producer,

followed by CRD 30 and CRD 50.

Kansas has what is typically described as a continental climate, without the

influence of any major bodies of water. Annual average precipitation ranges

between approximately 102 cm in the southeast to less than 51 cm in the western part

of the state, as shown in figure 2. Summers are warm, with most of the annual

precipitation occurring during this period.

2.1 Winter wheat

Winter wheat production (in tonnes, t), area (in hectares, ha) and yield (in t ha21) were

collected from USDA/NASS data for the entire state of Kansas, and for each CRD from

1982 through to 2004 (USDA 2005). Following their methodology, WW production and

Figure 1. Area of study, Kansas CRDs and Kansas average winter wheat production (1982–
2004) (USCRB 2005).

Figure 2. Average annual precipitation in Kansas, 1982 to 2004 (cm) (USHCN 2005).

Use of remote sensing for crop yield estimation 3797
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area were estimated using a sampling technique, and yield was calculated by dividing the
total winter wheat production by the area sown (USDA 2005).

2.2 Satellite data

Satellite data, including AVHRR-measured solar energy reflected/emitted from the

land surface (represented in 8-bit counts), was collected from the NOAA Global

Vegetation Index (GVI) data set from 1982 through to 2004. The GVI data set was

developed by sampling 4 km2 Global Area Coverage (GAC) data to 16 km2 spatial

resolution and from daily observations to seven-day composite data (Kidwell 1997).

The GVI digital counts in the visible (VIS, 0.58–0.68 mm, Ch1), near infrared (NIR,

0.72–1.00 mm, Ch2) and infrared (IR, 10.3–11.3 mm, Ch4) spectral regions were used
in this research. Post-launch calibrated VIS and NIR counts were converted to

reflectances (Kidwell 1997) and used to calculate the Normalized Difference

Vegetation Index (NDVI5(NIR2VIS)/(NIR + VIS)). The channel 4 (Ch4) counts

were converted to brightness (radiative) temperature (BT) using the method shown

in Kidwell (1997).

In order to reduce long-term systematic errors in the GVI time series (Gutman

1999, Kogan and Zhu 2001, Simoniello et al. 2004), the following procedure was used.

The VIS and NIR channel values were post-launch calibrated following the methods
of Rao and Chen (1995, 1996, 1999), Kidwell (1997) and Heidinger et al. (2003), and

normalized by the cosine solar zenith angle (SZA) and corrected for the Sun–Earth

distance. Quality/cloud (QC) masks were developed for each weekly image based on a

climatology of channel 4 temperatures (Gutman 1999). For data smoothing a

combination of a compound median filter and the least squares technique was applied

to the weekly time series. This smoothing completely eliminated high frequency

outliers (including random effects), and pulled out low frequency weather related

fluctuations (valleys and hills in the NDVI and BT time series) during the annual cycle
(Kogan 1997). After smoothing, inter-annual differences due to weather variations in

the NDVI and BT data became more apparent (Kogan et al. 2003).

The post-launch corrections and time series smoothing considerably improved the

stability of the NDVI and BT over time. However, we should admit that there is

some remaining long-term noise in the NDVI and BT values. Investigations of this

problem by Kogan and Zhu (2001) and Simoniello et al. (2004) showed that in most

crop related vegetative areas, maximum NDVI and BT change by the end of the

satellite life is less than 10%. In addition, this 10% reduction is much smaller than
the variation in the NDVI and BT values related to inter- and intra-annual weather

changes. This accuracy is appropriate for monitoring vegetation health in vegetative

areas (Kogan et al. 2003).

Furthermore, previous research showed that when VH indices are correlated with

yield anomalies, the correlation coefficient increases considerably during the critical

period of crop growth and development. This fact alone indicates that VH indices

can be used as proxies for assessment of crop conditions and productivity (Hayas

and Decker 1996, Dabrowska-Zielinska et al. 2002, Liu and Kogan 2002, Kogan
et al. 2003, Domenikiotis et al. 2004, Kogan et al. 2005).

3. Methodology

The research strategy of this paper was to extract the weather component from
winter wheat yield, NDVI and BT values, and to correlate the weather related

component of the yield with the corresponding components of NDVI and BT. The
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latter two were expressed in the form of VH indices (Kogan 1997). The goal was to

investigate the strength of the relationship and determine if the strongest correlation

coincides with the WW’s critical period, which is the period when WW production is

highly sensitive to weather conditions.

3.1 Winter wheat yield time series

Following Brockwell and Davis (2000), the WW yield time series shown in figure 3

were approximated by the following equation:

Yt~TtzdYt, t~1, . . . , n~23, ð1Þ

where Tt is a slowly changing function representing the deterministic component

(trend) that is regulated by agricultural technology, and dYt is a random component

regulated by weather fluctuations.

The deterministic component (Tt) was estimated using the least squares method. If

the yield time series are longer than 30 to 35 years, they might be approximated by a

second degree polynomial of the form:

Tt~a0za1tza2t2, ð2Þ

by choosing the parameters a0, a1 and a2 to minimize
Pn

t~1 Yt{Ttð Þ2. For a shorter

time series, as in our case, a linear approximation is sufficient to satisfy the

minimum criteria. Figure 3 shows that the linear trend represents tendencies in the

WW time series of Kansas CRDs, and the parameters of the linear equations are
shown in table 1. The random component (dYt) was expressed as a ratio of the

observed to the trend estimated yield:

dYt~Yt=Tt: ð3Þ

Figure 3 shows that in most areas, WW yield increases; this is due to technology

improvement. However, CRD 30 shows a slight decrease in the long-term yield trend.

Figure 3. Winter wheat yield time series.

Use of remote sensing for crop yield estimation 3799
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Although agriculture technology is improving here as well, analysis of the

literature indicates that this reduction is related to low precipitation rates in western

Kansas (as shown in figure 2) and intensive irrigation practices. Irrigation has

stimulated an increase in soil salinity that has become a severe environmental

hazard in this region. Farmers are facing decreasing crop yields due, in part, to high

levels of salinity. In some areas in western Kansas, land is being taken out of

production due to unsustainable crop yields (Miles et al. 1977, Hillel 2000, Eldeiry and

Garcia 2004).

As can be seen in figure 3, WW yield variations from the trend (dY) in Kansas and

the CRDs are large. For example, in Kansas, dY values in 1989 and 1997 were

estimated at 0.65 and 1.24, respectively. This indicated a 35% yield reduction in 1989

due to unfavourable weather, and a 24% increase in 1997 due to favourable weather.

These variations might be larger for the CRDs. For example, for the major WW

producer in Kansas, CRD 60, dY in 1989 and 1997 were estimated at 0.57 and 1.38

respectively. This indicated a 43% yield reduction in 1989 due to unfavourable

weather, and a 38% increase in 1997 due to favourable weather. In 1989, April

and May were the driest on record in many counties in Kansas (see figure 4(a)).

This contributed to a drought stressed crop. On the other hand, in 1997 spring rainfall

was near and above normal (see figure 4(b)), which resulted in an above trend WW

yield.

3.2 AVHRR-based VH indices

The principle for constructing VH indices stems from the properties of green

vegetation to reflect VIS and NIR, and emit IR solar radiation. If vegetation is

healthy, it reflects little radiation in the VIS (due to high chlorophyll absorption of

the solar radiation), much in the NIR (due to scattering of light by leaf internal

tissues and water content), and emits less thermal radiation in the IR spectral bands

(because the transpiring canopy is cooler). As a result, for healthy vegetation, NDVI

is large and BT is small. Conversely, for unhealthy vegetation, NDVI is small and

BT large (Jensen 2000).

The VH indices were calculated from the NDVI and BT values. Details of the

algorithm are presented in Kogan (1997). Here, only important steps are mentioned.

These include: (a) the complete elimination of high frequency noise from the NDVI

and BT annual time series, (b) the approximation of an annual cycle, (c) the

calculation of multi-year climatology, and (d) the estimation of medium to low

frequency fluctuations during the seasonal cycle associated with weather variations

(i.e. departure from climatology). The Vegetation Condition Index (VCI)

characterizing moisture, and the Temperature Condition Index (TCI) characterizing

thermal conditions were calculated as:

VCI~100 NDVI{NDVIminð Þ= NDVImax{NDVIminð Þ, ð4Þ

TCI~100 BTmax{BTð Þ= BTmax{BTminð Þ, ð5Þ

Table 1. Intercept and slope for winter wheat linear trend yield estimates.

Region Kansas CRD 10 CRD 20 CRD 30 CRD 40 CRD 50 CRD 60 CRD 70 CRD 80 CRD 90

Intercept 2477.90 757.08 482.55 330.47 21015.92 21149.23 2788.37 21945.53 21582.48 21037.48

Slope 0.258 20.361 20.224 20.146 0.529 0.595 0.995 0.995 0.811 0.537

3800 L. Salazar et al.
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where NDVI, NDVImax, NDVImin, BT, BTmax and BTmin are the smoothed weekly

NDVI or BT values and their 1982 to 2004 absolute maximum and minimum

(climatology). The range of VH indices changes from 0, quantifying severe

vegetation stress, to 100, quantifying favourable conditions (Kogan 1997).
Average weekly values of VH were calculated for each CRD and for total Kansas

for the area of WW growth.

4. Results and discussion

Since dY and the VH indices were similarly expressed as a deviation from climatology

(from trend for yield and from maximum to minimum for VH), further examination

Figure 4. Percentage of normal precipitation in: (a) spring 1989, and (b) spring 1997
(WWCB 1989, 1997).

Use of remote sensing for crop yield estimation 3801
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included correlation and regression analysis of these deviations to investigate the

association between them for each CRD and the entire state of Kansas.

Figure 5 shows the dynamics of the correlation coefficients for dY versus VCI and

TCI for Kansas and for three selected CRDs (30, 60 and 90). As seen, dY is highly

correlated with VCI (0.52–0.85) during April, May and early June (weeks 16 to 23).

This period is known as critical for yield in Kansas, because WW goes through the

reproductive period from the end of the biomass development to the beginning of

Figure 5. Dynamics of correlation coefficient for dY versus VCI and TCI.

3802 L. Salazar et al.
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maturation. The actual number of kernels that will form in the spike is determined

at this stage (Shroyer et al. 2004). Positive correlation of dY with a VCI indicates

that above trend WW yield is associated with a VCI above 60 (favourable moisture

conditions) and below trend yield is associated with a VCI below 40 (moisture

stress).

Crop response to moisture and thermal conditions is not equal during the growing

season (Kogan et al. 2005). According to figure 5, dY dependence on moisture

conditions (VCI) is stronger than its dependence on temperature conditions (TCI)

during the WW’s critical period. However, the highest correlation of dY with TCI is

shifted to the earlier time of the growing season (late February and March).

Figure 5 also shows that the dY versus the VCI relationship during the critical

period for WW is not equally strong for all regions. For example, CRD 90 that

produces three to four times less WW compared to the other two CRDs, has a

smaller correlation coefficient (0.52 as opposed to 0.85). This is explained by the fact

that the average VCI for CRD 90 was calculated using geographic boundaries that

also included those areas where WW is not cultivated.

In the statistical analysis we used both bivariate correlations and multiple

regression. The bivariate correlations revealed that dY was significantly related to

VCI for weeks 16 to 23 at a p,0.05 significance level. The correlation between dY

and TCI, on the other hand, was not significant at a p,0.05 level. Therefore, in

multiple regression analysis, dY was regressed on the linear combination of VCI

(weeks 16 to 23) values.

The results of fitting the ordinary least squares (OLS) regression model

approximated by equation (6) to the state of Kansas and to CRD 60 are shown in

table 2.

dY~b0zb1|VCI16zb2|VCI17zb3|VCI18zb4|VCI19z

b5|VCI20zb6|VCI21zb7|VCI22zb8|VCI23ze
ð6Þ

Table 2 shows that the value of R2 is large for Kansas (0.86) and CRD 60 (0.92). A

comparison of the relative degree of statistical significance of the model with those

of the partial regression coefficients reveals multi-collinearity. The overall model is

highly significant with F values of 12.88 (Kansas) and 12.38 (CRD 60), and p values

much smaller than 0.001. The smallest p value for a partial regression coefficient is

0.0572, which is not significant at a p,0.05 level. This type of result is a natural

consequence of multi-collinearity; the overall model may fit the data quite well, but

because several independent variables are measuring similar phenomena, it is

difficult to determine which of the individual variables significantly contribute to the

regression relationship.

The existence of multi-collinearity tends to inflate the variance of predicted

values, i.e. predictions of the response variable for sets of independent variables.

This inflation may be especially severe when the values of the independent variables

are not in the example. In addition, the OLS estimates of the individual regression

coefficients tend to be unstable and can affect both inference and model equation (6)

forecasting. The estimated values of the coefficients will also be very sensitive to

changes in the sample data and to the addition/deletion of a variable in the equation

(Chatterjee et al. 2000). To avoid this problem, we used an alternative method of

estimation, principal components regression (PCR), which results in better

estimation and prediction than OLS. This alternative has the potential to produce

Use of remote sensing for crop yield estimation 3803
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more precision in the estimated coefficients and smaller prediction errors when the

predictions are generated using data other than those used for estimation (Draper

and Smith 1981, Myers 1986).

Using PCR methodology, the variables in model equation (6) were transformed

into a new set of orthogonal or uncorrelated variables called principal components

(PCs) of the correlation matrix. This transformation ranks the new orthogonal

variables in order of their importance and the procedure then involves eliminating

some of the PCs to get a reduction in variance. After elimination of the least

important PCs, a multiple regression analysis of the response variable dY against the

reduced set of PCs was performed using OLS estimation. Since the PCs are

orthogonal, they are pair-wise independent, and hence OLS is appropriate. Once the

regression coefficients for the reduced set of orthogonal variables were calculated,

they were mathematically transformed into a new set of coefficients that correspond

to the original or initial correlated set of variables in model equation (6). These new

coefficients are principal component estimators (Gunst and Mason 1980).

The first part of table 3 shows the eigenvalues of the correlation matrix. From the

‘Eigenvalue’ column, it is clear that the first principal component has a very large

variance (7.23), the second and third have much smaller variances (0.71 and 0.04),

and the others have negligible variances. The ‘Difference’ column gives the

differences between adjacent eigenvalues. This statistic shows the rate of decrease in

variances of the PCs. The proportion of total variation accounted for by each of the

components is obtained by dividing each of the eigenvalues by the total variation.

Table 2. Results of multiple linear regression (OLS) of dY on the variables of equation (6).

Variable DF
Parameter
estimate

Standard
error t value Pr.|t|

Intercept 1 62.54104 17.75053 3.52 0.0078
VCI_W16 1 6.48299 4.70599 1.38 0.2056
VCI_W17 1 211.82405 14.88928 20.79 0.4500
VCI_W18 1 7.73344 18.87442 0.41 0.6928
VCI_W19 1 21.49892 7.80729 20.19 0.8525
VCI_W20 1 28.70017 7.56735 21.15 0.2835
VCI_W21 1 19.05204 11.36348 1.68 0.1321
VCI_W22 1 214.17956 9.37143 21.51 0.1687
VCI_W23 1 3.72277 3.41033 1.09 0.3068

Kansas: R
2
50.86, RMSE59.52, F512.88, P,0.001

Variable DF
Parameter
estimate

Standard
error t value Pr.|t|

Intercept 1 29.30706 19.07030 1.54 0.1629
VCI_W16 1 3.49046 3.86022 0.90 0.3923
VCI_W17 1 28.91032 10.34932 20.86 0.4143
VCI_W18 1 10.63570 11.32743 0.94 0.3752
VCI_W19 1 26.23895 5.08196 21.23 0.2545
VCI_W20 1 6.82772 4.63947 1.47 0.1793
VCI_W21 1 214.96918 8.52122 21.76 0.1170
VCI_W22 1 16.05870 7.34428 2.19 0.0602
VCI_W23 1 25.66366 2.55124 22.22 0.0572

CRD 60: R250.92, RMSE58.56, F512.38, P,0.0009
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These quantities are given in the ‘Proportion’ column. It is obvious that the first

component accounts for 90% of the total variation, a result that is typical when a

single factor, in this case moisture (VCI), is a common factor in the variability

among the original variables. The cumulative proportions printed in the

‘Cumulative’ column indicate that 99% of the total variation in the eight variables

is explained by only two components.

The second part of table 3 (‘Eigenvectors’) shows the eigenvectors for each of the

PCs. These coefficients, which relate the components to the original variables listed

on the first column, are scaled so that their sum of squares is unity. This enables

which original variables dominate a component to be found. The coefficients of the

first PC show a positive relationship with all variables, with somewhat larger

contributions from VCI19 (0.368) and VCI20 (0.370). As expected, these components

have the highest correlation coefficient with dY (figure 5) and are in the middle of

the critical period of WW. The second component is dominated by VCI23 (0.560).

Table 3. Principal component results for Kansas.

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 7.23297658 6.51622157 0.9041 0.9041
2 0.71675501 0.67386858 0.0896 0.9937
3 0.04288643 0.03697766 0.0054 0.9991
4 0.00590877 0.00518869 0.0007 0.9998
5 0.00072008 0.00004161 0.0001 0.9999
6 0.00067847 0.00062417 0.0001 1.0000
7 0.00005430 0.00003393 0.0000 1.0000
8 0.00002037 0.0000 1.0000

Eigenvectors

Prin1 Prin2 Prin3 Prin4

VCI_W16 0.337291 20.473839 0.602672 20.292170
VCI_W17 0.351031 20.387369 0.140501 0.105931
VCI_W18 0.361843 20.264195 20.227354 0.335778
VCI_W19 0.368569 20.112244 20.402355 0.451404
VCI_W20 0.370127 0.055453 20.367292 20.372781
VCI_W21 0.363545 0.238984 20.203505 20.467141
VCI_W22 0.348392 0.411122 0.105610 20.180868
VCI_W23 0.325119 0.560192 0.464753 0.443851

Eigenvectors

Prin5 Prin6 Prin7 Prin8

VCI_W16 0.008836 20.433733 20.042480 0.152079
VCI_W17 20.067652 0.616234 0.103690 20.548350
VCI_W18 0.069462 0.290580 20.024575 0.738220
VCI_W19 20.273256 20.566044 0.009746 20.301218
VCI_W20 0.650522 20.39891 20.367107 20.162862
VCI_W21 20.183231 0.012611 0.713215 0.093158
VCI_W22 20.568043 0.156306 20.560787 0.064415
VCI_W23 0.369358 20.033269 0.169765 20.033637
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The final yield component, kernel weight, is determined during maturation for WW,

which occurs in this week.

The model equation (6) can then be expressed as:

Y~b0z
X8

i~1

bi
:Xize: ð7Þ

Let ȳ and x̄j be the means of Y and Xj, respectively. Also, let

sy~
Pn

i~1

yi{ȳð Þ2
.

n{1ð Þ
� �1=2

and sj~
Pn

i~1

xij{x̄j

� �2
.

n{1ð Þ
� �1=2

be the standard

deviations of the response and jth predictor variable respectively. Equation (7) can

then be written in terms of standardized variables as:

~
Y~h1|

~
X 1zh2|

~
X 2z . . . zh8|

~
X 8ze0, ð8Þ

where
~
Y~ yj{ȳ

� ��
sy is the standardized version of the response variable (dY) and

~
X~ xij{x̄j

� ��
sj is the standardized version of the jth predictor variable (VCIj). The

estimated coefficients satisfy:

bj~ sy

�
sj

� �
:hj, j~1, 2, . . . , 8, ð9:1Þ

b0~ȳ{b1
:x̄1{b2

:x̄2{ . . . {b8
:x̄8: ð9:2Þ

The eight principal components of the standardized predictor variables are given by:

Zj~
X8

i~1

cij
:Xi, j~1, . . . , 8, ð10Þ

where cij are elements of the eigenvectors of the matrix of bivariate correlation

between pairs of the explanatory variables. The model in equation (8) may be

written in terms of the principal components as:

~
Y~a1

:Z1za2
:Z2z . . . za8

:Z8ze0, ð11Þ

where the a and h values are related by:

aj~
X8

i~1

cij
:hi, j~1, 2, . . . , 8, ð12Þ

or, conversely:

hj~
X8

i~1

cij
:ai, j~1, 2, . . . , 8: ð13Þ

It can be pointed out that just because the first two PCs explain 99% of the

variation it does not mean that they form the best subset of predictors for dY (Hadi

and Ling 1998, Jolliffe 2002). Therefore, cross-validation was used to determine the

PCs that should be included in the model. For this criterion, the residual of the ith

observation that results from dropping it and predicting it on the basis of all other

observations was computed for each candidate model. The sum of squares of these

values is the predicted residual sum of squares, or PRESS (Allen 1974, Geisser and
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Eddy 1979),

PRESS~
Xn

i~1

êi= 1{hiið Þð Þ2, ð14Þ

where êi and hii5xi(X9X)21x9i are the residual and the leverage for the ith

observation in the candidate model, where x9 is the transpose of x (matrix of VCI

predictors) and x9i is the transpose of column i. Since we have 8 PCs, we proved 255

different models for each region selecting those models with a minimum PRESS

value as shown in table 4. This table shows that these models explain 85% (Kansas)

to 91% (CRD 60) of the variation in dY, almost the same amount as the OLS

method explained. It has already been argued that the OLS estimates are
unsatisfactory when multi-collinearity is present. Hence, following the PCR

analysis, the final set of coefficients for variables in model equation (6) are

calculated and presented in table 5.

5. Validation of the prediction model (independent testing)

Validation is the step in which the prediction with the chosen model is tested
independently. At the beginning of the model building stage, the data were divided

into two sets, the training and validation data sets. The division was carried out

randomly so that they consisted of 15 and 8 samples respectively. The model selected

Table 4. Selection of principal components for the prediction based on minimum PRESS
statistic values.

Region VarsInModel _PRESS_ _RSQ_ _ADJRSQ_ _RMSE_

Kansas Prin1 Prin4 Prin6 Prin7 1634.37 0.85 0.79 8.34
CRD 10 Prin1 Prin4 Prin5 Prin7 1097.44 0.89 0.86 7.01
CRD 20 Prin1 Prin3 Prin6 Prin8 3182.98 0.86 0.81 10.57
CRD 30 Prin1 Prin3 Prin6 Prin8 3058.50 0.83 0.78 10.86
CRD 40 Prin1 Prin4 Prin6 Prin8 3298.72 0.82 0.75 12.13
CRD 50 Prin1 Prin5 Prin6 Prin7 2484.77 0.87 0.83 10.69
CRD 60 Prin1 Prin3 Prin4 Prin7 1289.29 0.91 0.88 7.63
CRD 70 Prin1 Prin3 Prin5 Prin6 4493.59 0.83 0.77 14.26
CRD 80 Prin1 Prin4 Prin6 Prin7 4888.22 0.77 0.68 14.07
CRD 90 Prin1 Prin4 Prin5 Prin8 4363.91 0.81 0.75 12.60

Table 5. Estimated regression coefficients for the original variables using models with
minimum PRESS values.

Region Intercept
VCI_
W16

VCI_
W17

VCI_
W18

VCI_
W19

VCI_
W20

VCI_
W21

VCI_
W22

VCI_
W23

Kansas 76.16 3.661 22.905 23.765 3.618 27.228 18.040 214.17 3.335
CRD 10 95.17 11.293 222.39 9.217 1.233 5.148 29.297 10.386 25.430
CRD 20 66.04 10.495 224.14 15.829 213.22 44.970 265.10 44.621 212.83
CRD 30 73.42 1.475 212.64 25.753 232.54 32.458 216.48 2.900 20.386
CRD 40 29.50 24.933 20.746 228.13 8.787 0.473 21.972 226.63 8.775
CRD 50 62.44 25.281 24.704 235.82 15.250 9.683 210.87 5.201 22.275
CRD 60 20.39 1.883 24.507 5.867 25.028 9.041 216.93 16.241 25.262
CRD 70 42.01 1.058 0.150 21.619 22.814 9.069 22.185 27.910 5.379
CRD 80 80.85 26.229 19.703 217.38 0.131 21.923 20.381 220.59 6.336
CRD 90 46.30 16.080 235.66 16.414 4.465 10.181 219.99 9.767 20.227
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in the optimization step (table 5) was applied to the validation data set and the

simulated (S) and observed (O) values were compared. Figure 6 displays observed

versus independently simulated WW yield time series. The graphs show that the time

series match quite well.

We also regressed the simulated values on the observed values, and statistics were

generated. Table 6 shows the statistics of the fit of S values versus O values for WW
yield for total Kansas and each CRD. According to Willmott (1982) in ‘good’

models systematic errors should approach zero, while non-systematic errors should

approach the root mean square error (RMSE). Therefore, we can conclude from

table 6 that the models based on equation (6) with the coefficients estimated using

the PCR methodology detailed in table 5 perform very well.

6. Conclusions

In Kansas, the major producer of winter wheat (WW) in the USA, the two

AVHRR-based VH indices characterizing moisture (VCI) and thermal (TCI)

Figure 6. Simulated versus observed winter wheat yield independent testing.

Table 6. Statistics of an independent test for the models in table 5.

Region
Mean absolute

error Root MSE
Systematic

error
Non-systematic

error

R2 between
Simulated (S) and
Observed (O) yield

Kansas 2.095 2.541 0.00 2.387 0.84
CRD 10 1.667 2.135 0.01 2.006 0.89
CRD 20 2.347 3.074 0.00 2.888 0.85
CRD 30 2.126 3.293 0.00 3.105 0.82
CRD 40 2.936 3.921 0.01 3.683 0.81
CRD 50 2.545 3.338 0.00 3.135 0.87
CRD 60 1.829 2.309 0.01 2.169 0.91
CRD 70 3.539 4.707 0.01 4.421 0.82
CRD 80 2.624 3.696 0.00 3.458 0.76
CRD 90 2.427 3.514 0.03 3.287 0.81
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conditions were tested as predictors of WW yield. It was found that WW was more

sensitive to moisture conditions. Correlation analysis between WW yield deviations
from trend (dY) with VCI during the period 1982 to 2004, showed strong correlation

during the critical period of WW growth (weeks 16 to 23, April to early June).

Therefore, this index was used for the statistical modelling of WW yield. This study

shows that WW yield can be estimated from the VCI index approximately four

weeks prior to harvest time. The VH indices are delivered in real time (every

Monday) to http://orbit.nesdis.noaa.gov/smcd/emcb/vci. These results are comple-

mentary to crop modelling in other countries (Hayas and Decker 1996, Dabrowska-

Zielinska et al. 2002, Liu and Kogan 2002, Kogan et al. 2003, Domenikiotis et al.

2004, Kogan et al. 2005). Similar models might be developed for other states, CRDs

and even countries. AVHRR data from NOAA polar orbiting satellites can provide

valuable information about crop conditions and production on a regional scale in

the Great Plains.

Several useful improvements could be made:

(1) To provide conditions and yield estimates for smaller geographic areas.

CRD-level yield estimates provide little information about individual
counties within each CRD. County-level estimates would improve the ability

to identify and assess changes in crop yields for smaller geographic areas.

This would improve the overall ability to assess and locate potential

production surplus or deficit areas within each CRD. Such information could

improve harvest, storage, marketing and crop transportation planning

process.

(2) To combine satellite data with weather data specifically during winter and

early spring when vegetation is dormant and the application of the VCI is

limited.
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